Write your name here Surname	Other name	nes					
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number					
Chemistry	/						
International Advance Unit 3: Practical Skills		dvanced Level					
Unit 3: Practical Skills Sample Assessment Materials for fire	s in Chemistry I	Paper Reference					
Unit 3: Practical Skill	s in Chemistry I						

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- There is a Periodic Table on the back page of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S58311A
©2018 Pearson Education Ltd.

Answer ALL questions.

Write your answers in the spaces provided.

1 The enthalpy change for the reaction between zinc and copper(II) sulfate solution can be determined using the procedure shown.

The equation for the reaction is:

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

Procedure

- Step **1** Weigh about 5 g of zinc powder. This is an excess.
- Step 2 Measure 50 cm³ of 1.0 mol dm⁻³ copper(II) sulfate solution into a polystyrene cup.
- Step **3** Start a stop clock. Stir the solution continuously with a thermometer and measure the temperature of the solution each minute for 3 minutes.
- Step 4 At exactly 3.5 minutes, add the zinc powder to the copper(II) sulfate solution.
- Step **5** Continue to stir the mixture and read the temperature each minute from 4 to 10 minutes.
- (a) (i) Name the **most** suitable piece of apparatus for measuring 50 cm³ of copper(II) sulfate solution.

(ii) The diagram shows part of the thermometer at 4 minutes. Record the temperature in the table of results **and** plot the point on the graph.

(1)

Results

Time / minutes	0	1	2	3	4	5	6	7	8	9	10
Temperature / °C	19.0	20.5	20.0	20.0		62.5	58.5	55.0	52.0	48.5	45.0

(b)	The maximum temperature change for the reaction, ΔT , is estimated by drawing two lines of best fit on the graph and extrapolating them.	
	(i) Give the reason why the point you plotted in (a)(ii) should not be included in the lines of best fit.	(1)
	(ii) Estimate the maximum temperature change, ΔT . Show your working on the graph.	(3)
	(iii) Give a reason why the temperature of the solution is measured for 3 minutes before adding the zinc.	(1)
	(iv) Give the main reason why the temperature of the solution is measured over a period of time after adding the zinc.	(1)

(c)	(i)	Use the value you have obtained for the temperature rise (ΔT) in (b)(ii) to calculate the heat energy produced in the reaction between zinc and copper(II) sulfate solution. Include units with your answer.	
		(Assume the specific heat capacity of the solution to be $4.2\mathrm{Jg^{-1}^{\circ}C^{-1}}$ and the density of the solution to be $1.0\mathrm{gcm^{-3}}$.)	(1)
	(ii)	The solution contained 0.050 mol of copper(II) sulfate. Calculate the enthalpy change, ΔH , for the reaction between zinc and copper(II) sulfate solution. Give your answer to an appropriate number of significant figures and include a sign and units.	(3)
(d)	-	ggest one improvement to the procedure , other than changing the measuring uipment or repeating the experiment, which would give a more accurate result.	(1)

(Total for Question 1 = 13 marks)

2 A student was given five boiling tubes, each containing one aqueous solution:

dilute hydrochloric acid, HCl(aq)

potassium carbonate, K₂CO₃(aq)

sodium iodide, NaI(aq)

dilute nitric acid, HNO₃(aq)

sodium chloride, NaCl(aq).

The solutions were labelled **A**, **B**, **C**, **D** and **E**, but not necessarily in this order.

The student carried out three tests on each solution.

Test 1

- The student put about 2 cm³ of each solution into separate test tubes.
- The student added one spatula measure of solid sodium carbonate, Na₂CO₃, to each test tube.
- Observations were recorded in Table 1, in the column labelled Test 1.

Test 2

- The student put about 1 cm³ of each solution into separate test tubes.
- The student added an equal volume of aqueous silver nitrate solution, AgNO₃, to each test tube.
- Observations were recorded in Table 1, in the column labelled Test 2.

Test 3

- To the final mixture in each test tube from Test 2, the student added about 1 cm³ of dilute nitric acid, HNO₃.
- Observations were recorded in Table 1, in the column labelled Test 3.

Solution	Test 1	Test 2	Test 3
A	effervescence	no reaction	unchanged
В	no reaction	yellow precipitate	unchanged
С	no reaction	white precipitate	unchanged
D	effervescence	white precipitate	unchanged
E	no reaction	white precipitate	effervescence

Table 1

(a) (i) Identify each of the solutions from the observations recorded in Table 1. Write the letter that corresponds to each solution in Table 2.

(3)

Solution	Letter
dilute hydrochloric acid, HCl(aq)	
potassium carbonate, K ₂ CO ₃ (aq)	
sodium iodide, NaI(aq)	
dilute nitric acid, HNO₃(aq)	
sodium chloride, NaCl(aq)	

Table 2

(ii) State how you use the observations to distinguish between potassium carbonate

and sodium chloride solutions.	(1)
(b) The student suggested that a flame test could also be used to help to distinguish between potassium carbonate solution and sodium chloride solution. State how the flame colours would differ.	(1)
(c) A further chemical test was carried out on the precipitates from Test 3 to confirm the identity of the original solution.	
Give this test, and its result, which would distinguish between sodium iodide solution and sodium chloride solution.	(2)
(Total for Question 2 = 7 ma	rks)

This question is about the reaction sequence involving compound \mathbf{F} , which has the molecular formula C_3H_8O .

- (a) In reaction 1, misty fumes were observed.
 - (i) Identify, by name or formula, the misty fumes.

(1)

(ii) State what can be deduced about compound **F** from this observation.

(b) The infrared spectrum of liquid **F** is shown.

Give the wavenumber range of the absorption which confirms your deduction in (a)(ii).

(1)

- (c) Gas \mathbf{H} , C_3H_6 , was formed in Reaction 2. The functional group present in \mathbf{H} was identified by shaking a sample of \mathbf{H} in a test tube with a few drops of bromine dissolved in a non-polar organic solvent.
 - (i) Give the colour change observed for this reaction.

(1)

From

.

(ii) Write an equation for the reaction of C_3H_6 with bromine.

- (d) Reaction 3 was carried out by slowly adding a solution of acidified potassium dichromate(VI) to liquid **F** in a cooled flask. The flask was set up for distillation and gently heated. The product, **J**, was distilled directly out of the reaction mixture.
 - (i) Draw a diagram of the apparatus suitable for the distillation of **J** from the reaction mixture.

(3)

(ii) Draw the structures of two possible isomers of J, C₃H₆O, in the boxes.

(2)

(i) ⁻	The infrared spectrum of J has absorbances at 2716 and 2893 cm ^{-1} .	
	dentify the bond responsible for these absorbances, and hence the unctional group in J .	
		(1)
(ii) (Give a chemical test and its expected result to confirm the identity of J .	(2)
		(2)
f) Nam	ne compound F .	(1)
		(-)
	(Total for Question 3 = 1	4 marks)

4 A class of students carried out experiments to determine the value of \mathbf{x} in the formula of hydrated sodium carbonate, Na₂CO₃.xH₂O.

Hydrated sodium carbonate was heated until no more water of crystallisation remained. Anhydrous sodium carbonate, Na₂CO₃, was formed.

$$Na_2CO_3.xH_2O \rightarrow Na_2CO_3 + xH_2O$$

The students were given the following instructions:

- weigh a sample of the hydrated sodium carbonate in a pre-weighed crucible
- heat the crucible containing the sample to remove the water of crystallisation
- allow the crucible to cool and then reweigh the crucible.

A student's results are shown in Table 3.

(a) Complete Table 3.

(2)

Measurement	Value / g
Mass of crucible empty	19.36
Mass of crucible + hydrated sodium carbonate	26.06
Mass of crucible + anhydrous sodium carbonate	21.98
Mass of hydrated sodium carbonate	
Mass of anhydrous sodium carbonate	
Mass of water removed	

Table 3

(b) (i) Calculate the number of moles of water removed on heating the hydrated sodium carbonate.

(1)

(ii) Calculate the number of moles of anhydrous sodium carbonate, Na₂CO₃, formed after heating.

(2)

(iii) Use your answers from (b)(i) and (b)(ii) to calculate the value of **x**. Give your answer to **three** significant figures.

(2)

(c) **Each** use of the balance to find a mass reading in the table has a maximum uncertainty of ± 0.005 g.

Calculate the percentage error in the measurement of the mass of the crucible and hydrated sodium carbonate (26.06 g) before heating.

(e)	Devise an experiment involving a titration that could be used to determine the value of \mathbf{x} in Na ₂ CO ₃ .xH ₂ O.	
	List the essential steps in the practical procedure.	
	You are not expected to explain how the data is used to calculate \mathbf{x} .	(4)
	(Total for Question 4 = 16 m	arks)
	TOTAL FOR PAPER = 50 M	ARKS

The Periodic Table of Elements

																		_								
0 (8)	4.0 He hetium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	추	krypton 36	3	131.3	Xenon	54	[222]	윤	radon 86		ted							
7	(17)	19.0	Ŀ	fluorine	35.5	บ	chlorine 17	79.9	Br	bromine 35	3	126.9	Iodine	53	[210]	Αt	astatine 85		een repor		175	ב	lutetium 71	[257]	ב	lawrencium 103
9	(16)	16.0	0	oxygen	32.1	S	sulfur 16	79.0	Se	selenium 34	, ,	127.6	le le	52	[506]	8	polonium 84		116 have b ticated		173	Х	ytterbium 70	[254]		nobelium 102
2	(15)	14.0	z	nitrogen 7	31.0	<u> </u>	phosphorus 15	74.9	As	arsenic 33	3	121.8	Sb	51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated		169		thulium 69	[526]		mendelevium 101
4	(14)	12.0	U	carbon 6	78.1	Si	_	72.6	ge	germanium 32	70	118.7	S =	20	207.2	Ъ	lead 82		atomic nun but not fu		167	占	erbium 68	[253]		fermium 1
m	(13)	10.8	Ф	boron	27.0	Ž	aluminium 13	69.7	Ga	_	5 ;	114.8	L	49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported but not fully authenticated		165	운	holmium 67	[254]	Es	einsteinium 99
							(12)	65.4	Zu	zinc 30	2 5	112.4	Ca	48	200.6	Ξ	mercury 80		Eleme		163		dysprosium 66	[251]	ᡈ	californium einsteinium 98 99
							(11)	63.5	J	copper	67.07	6.701	Age is	47	197.0	Ρη	plog 79	[272]	Rg roentgenium		159		terbium d	[245]		berketium c
							(10)	58.7	ź	nickel	07	106.4	Pd	46	195.1	꿉	platinum 78	[271]	DS damstadtium in	2	157	В	gadolinium 64	[247]	Ę	aurium 96
							(6)	58.9	ပ	cobalt	/7	102.9	Rhodium militari		192.2	<u>1</u>	iridium 77	[368]	E		152		europium i	[243]	Am	americium 95
	1.0 H hydrogen						(8)	55.8	Fe	iron 26	07	101.1	Ru	4	190.2	os	osmium 76	[277]	Hs hassium r		150		samarium 62	_	Pu	plutonium 94
							0	54.9	W	nanganese	67	[86] I	Mo Tc Ru	43	186.2	Re	rhenium 75	[264]	Bh bohrium		[147]			[237]	å	neptunium 93
		nass	70	ımber			(9)	52.0	ъ	chromium manganese	17	95.9	Mo	42	183.8	>	tungsten 74	[366]	Sg seaborgium	3	144	P	praseodymium neodymium promethium 59 60 61		>	uranium 1
	Key	relative atomic mass	atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 73	62	6.76	Q Notice		180.9	Ā	tantalum 73	[262]	E	2	141	Ą	raseodymium 59	[231]	Pa	protactinium 91
		relati	ato	atomic			(4)	47.9	ï	Ę	77	71.5	Zr	40	178.5	Ŧ	hafnium 72	[261]	Rf rutherfordium		140		cerium p	232		thorium p
							(3)	45.0	Sc	scandium 21	17	88.9	-		138.9	La*	lanthanum 57	[227]	Ac*	֓֟֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֡֓֓֓֓֟֓֓֓֓֟֓֓֡֓֡֓֡֓֡֓֟֓֓֡֓֡		s				
7	(2)	9.0	Be	beryllium 4	24.3	Wa	magnesium 12	40.1	Ca	F	27,	9.78	Sr	38	137.3		barium l	[326]	Ra radium	3		* Lanthanide series	* Actinide series			
-	3	6.9	ב	lithium	23.0	Na N	_	39.1	¥	potassium 19	2 2	85.5	2	-	132.9	ర	caesium 55	[223]	Fr francium 87	5		* Lanth	* Actini			