| Write your name here Surname | Other name | nes | | | | | | |--|------------------|------------------|--|--|--|--|--| | Pearson Edexcel International Advanced Level | Centre Number | Candidate Number | | | | | | | Chemistry | / | | | | | | | | International Advance Unit 3: Practical Skills | | dvanced Level | | | | | | | Unit 3: Practical Skills Sample Assessment Materials for fire | s in Chemistry I | Paper Reference | | | | | | | Unit 3: Practical Skill | s in Chemistry I | | | | | | | # **Instructions** - Use **black** ink or **black** ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. - Show all your working in calculations and include units where appropriate. # Information - The total mark for this paper is 50. - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. - There is a Periodic Table on the back page of this paper. # **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ S58311A ©2018 Pearson Education Ltd. # **Answer ALL questions.** # Write your answers in the spaces provided. 1 The enthalpy change for the reaction between zinc and copper(II) sulfate solution can be determined using the procedure shown. The equation for the reaction is: $$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$ # **Procedure** - Step **1** Weigh about 5 g of zinc powder. This is an excess. - Step 2 Measure 50 cm³ of 1.0 mol dm⁻³ copper(II) sulfate solution into a polystyrene cup. - Step **3** Start a stop clock. Stir the solution continuously with a thermometer and measure the temperature of the solution each minute for 3 minutes. - Step 4 At exactly 3.5 minutes, add the zinc powder to the copper(II) sulfate solution. - Step **5** Continue to stir the mixture and read the temperature each minute from 4 to 10 minutes. - (a) (i) Name the **most** suitable piece of apparatus for measuring 50 cm³ of copper(II) sulfate solution. (ii) The diagram shows part of the thermometer at 4 minutes. Record the temperature in the table of results **and** plot the point on the graph. (1) # **Results** | Time / minutes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |------------------|------|------|------|------|---|------|------|------|------|------|------| | Temperature / °C | 19.0 | 20.5 | 20.0 | 20.0 | | 62.5 | 58.5 | 55.0 | 52.0 | 48.5 | 45.0 | | (b) | The maximum temperature change for the reaction, ΔT , is estimated by drawing two lines of best fit on the graph and extrapolating them. | | |-----|--|-----| | | (i) Give the reason why the point you plotted in (a)(ii) should not be included in the lines of best fit. | (1) | | | (ii) Estimate the maximum temperature change, ΔT . Show your working on the graph. | (3) | | | (iii) Give a reason why the temperature of the solution is measured for 3 minutes before adding the zinc. | (1) | | | (iv) Give the main reason why the temperature of the solution is measured over a period of time after adding the zinc. | (1) | | | | | | (c) | (i) | Use the value you have obtained for the temperature rise (ΔT) in (b)(ii) to calculate the heat energy produced in the reaction between zinc and copper(II) sulfate solution. Include units with your answer. | | |-----|------|---|-----| | | | (Assume the specific heat capacity of the solution to be $4.2\mathrm{Jg^{-1}^{\circ}C^{-1}}$ and the density of the solution to be $1.0\mathrm{gcm^{-3}}$.) | (1) | | | (ii) | The solution contained 0.050 mol of copper(II) sulfate. Calculate the enthalpy change, ΔH , for the reaction between zinc and copper(II) sulfate solution. Give your answer to an appropriate number of significant figures and include a sign and units. | (3) | | (d) | - | ggest one improvement to the procedure , other than changing the measuring
uipment or repeating the experiment, which would give a more accurate result. | (1) | (Total for Question 1 = 13 marks) 2 A student was given five boiling tubes, each containing one aqueous solution: dilute hydrochloric acid, HCl(aq) potassium carbonate, K₂CO₃(aq) sodium iodide, NaI(aq) dilute nitric acid, HNO₃(aq) sodium chloride, NaCl(aq). The solutions were labelled **A**, **B**, **C**, **D** and **E**, but not necessarily in this order. The student carried out three tests on each solution. # Test 1 - The student put about 2 cm³ of each solution into separate test tubes. - The student added one spatula measure of solid sodium carbonate, Na₂CO₃, to each test tube. - Observations were recorded in Table 1, in the column labelled Test 1. # Test 2 - The student put about 1 cm³ of each solution into separate test tubes. - The student added an equal volume of aqueous silver nitrate solution, AgNO₃, to each test tube. - Observations were recorded in Table 1, in the column labelled Test 2. ## Test 3 - To the final mixture in each test tube from Test 2, the student added about 1 cm³ of dilute nitric acid, HNO₃. - Observations were recorded in Table 1, in the column labelled Test 3. | Solution | Test 1 | Test 2 | Test 3 | |----------|---------------|--------------------|---------------| | A | effervescence | no reaction | unchanged | | В | no reaction | yellow precipitate | unchanged | | С | no reaction | white precipitate | unchanged | | D | effervescence | white precipitate | unchanged | | E | no reaction | white precipitate | effervescence | Table 1 (a) (i) Identify each of the solutions from the observations recorded in Table 1. Write the letter that corresponds to each solution in Table 2. (3) | Solution | Letter | |--|--------| | dilute hydrochloric acid, HCl(aq) | | | potassium carbonate, K ₂ CO ₃ (aq) | | | sodium iodide, NaI(aq) | | | dilute nitric acid, HNO₃(aq) | | | sodium chloride, NaCl(aq) | | # Table 2 (ii) State how you use the observations to distinguish between potassium carbonate | and sodium chloride solutions. | (1) | |--|------| | | | | (b) The student suggested that a flame test could also be used to help to distinguish between potassium carbonate solution and sodium chloride solution. State how the flame colours would differ. | (1) | | | | | (c) A further chemical test was carried out on the precipitates from Test 3 to confirm the identity of the original solution. | | | Give this test, and its result, which would distinguish between sodium iodide solution and sodium chloride solution. | (2) | | | | | (Total for Question 2 = 7 ma | rks) | This question is about the reaction sequence involving compound \mathbf{F} , which has the molecular formula C_3H_8O . - (a) In reaction 1, misty fumes were observed. - (i) Identify, by name or formula, the misty fumes. (1) (ii) State what can be deduced about compound **F** from this observation. (b) The infrared spectrum of liquid **F** is shown. Give the wavenumber range of the absorption which confirms your deduction in (a)(ii). (1) - (c) Gas \mathbf{H} , C_3H_6 , was formed in Reaction 2. The functional group present in \mathbf{H} was identified by shaking a sample of \mathbf{H} in a test tube with a few drops of bromine dissolved in a non-polar organic solvent. - (i) Give the colour change observed for this reaction. (1) From (ii) Write an equation for the reaction of C_3H_6 with bromine. - (d) Reaction 3 was carried out by slowly adding a solution of acidified potassium dichromate(VI) to liquid **F** in a cooled flask. The flask was set up for distillation and gently heated. The product, **J**, was distilled directly out of the reaction mixture. - (i) Draw a diagram of the apparatus suitable for the distillation of **J** from the reaction mixture. (3) (ii) Draw the structures of two possible isomers of J, C₃H₆O, in the boxes. (2) | (i) ⁻ | The infrared spectrum of J has absorbances at 2716 and 2893 cm ^{-1} . | | |------------------|---|----------| | | dentify the bond responsible for these absorbances, and hence the unctional group in J . | | | | | (1) | | (ii) (| Give a chemical test and its expected result to confirm the identity of J . | (2) | | | | (2) | | | | | | | | | | | | | | f) Nam | ne compound F . | (1) | | | | (-) | | | (Total for Question 3 = 1 | 4 marks) | 4 A class of students carried out experiments to determine the value of \mathbf{x} in the formula of hydrated sodium carbonate, Na₂CO₃.xH₂O. Hydrated sodium carbonate was heated until no more water of crystallisation remained. Anhydrous sodium carbonate, Na₂CO₃, was formed. $$Na_2CO_3.xH_2O \rightarrow Na_2CO_3 + xH_2O$$ The students were given the following instructions: - weigh a sample of the hydrated sodium carbonate in a pre-weighed crucible - heat the crucible containing the sample to remove the water of crystallisation - allow the crucible to cool and then reweigh the crucible. A student's results are shown in Table 3. (a) Complete Table 3. (2) | Measurement | Value / g | |---|-----------| | Mass of crucible empty | 19.36 | | Mass of crucible + hydrated sodium carbonate | 26.06 | | Mass of crucible + anhydrous sodium carbonate | 21.98 | | Mass of hydrated sodium carbonate | | | Mass of anhydrous sodium carbonate | | | Mass of water removed | | ## Table 3 (b) (i) Calculate the number of moles of water removed on heating the hydrated sodium carbonate. (1) (ii) Calculate the number of moles of anhydrous sodium carbonate, Na₂CO₃, formed after heating. (2) (iii) Use your answers from (b)(i) and (b)(ii) to calculate the value of **x**. Give your answer to **three** significant figures. (2) (c) **Each** use of the balance to find a mass reading in the table has a maximum uncertainty of ± 0.005 g. Calculate the percentage error in the measurement of the mass of the crucible and hydrated sodium carbonate (26.06 g) before heating. | (e) | Devise an experiment involving a titration that could be used to determine the value of \mathbf{x} in Na ₂ CO ₃ .xH ₂ O. | | |-----|---|-------| | | List the essential steps in the practical procedure. | | | | You are not expected to explain how the data is used to calculate \mathbf{x} . | (4) | (Total for Question 4 = 16 m | arks) | | | TOTAL FOR PAPER = 50 M | ARKS | # The Periodic Table of Elements | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | |-------|-----------------------------|----------------------|---------------|--------------------------------|------|----------|------------------|------|----|--------------------|-------|--------|---------------------|----|-------|----------|-----------------|-------|---|--|-------|---------------------|--|-------|----|----------------------------------| | 0 (8) | 4.0
He hetium 2 | 20.2 | Ne | neon
10 | 39.9 | Ar | argon
18 | 83.8 | 추 | krypton
36 | 3 | 131.3 | Xenon | 54 | [222] | 윤 | radon
86 | | ted | | | | | | | | | 7 | (17) | 19.0 | Ŀ | fluorine | 35.5 | บ | chlorine
17 | 79.9 | Br | bromine
35 | 3 | 126.9 | Iodine | 53 | [210] | Αt | astatine
85 | | een repor | | 175 | ב | lutetium
71 | [257] | ב | lawrencium
103 | | 9 | (16) | 16.0 | 0 | oxygen | 32.1 | S | sulfur
16 | 79.0 | Se | selenium
34 | , , | 127.6 | le le | 52 | [506] | 8 | polonium
84 | | 116 have b
ticated | | 173 | Х | ytterbium
70 | [254] | | nobelium
102 | | 2 | (15) | 14.0 | z | nitrogen
7 | 31.0 | <u> </u> | phosphorus
15 | 74.9 | As | arsenic
33 | 3 | 121.8 | Sb | 51 | 209.0 | Bi | bismuth
83 | | tomic numbers 112-116 hav
but not fully authenticated | | 169 | | thulium
69 | [526] | | mendelevium
101 | | 4 | (14) | 12.0 | U | carbon 6 | 78.1 | Si | _ | 72.6 | ge | germanium
32 | 70 | 118.7 | S = | 20 | 207.2 | Ъ | lead
82 | | atomic nun
but not fu | | 167 | 占 | erbium
68 | [253] | | fermium 1 | | m | (13) | 10.8 | Ф | boron | 27.0 | Ž | aluminium
13 | 69.7 | Ga | _ | 5 ; | 114.8 | L | 49 | 204.4 | F | thallium
81 | | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | 165 | 운 | holmium
67 | [254] | Es | einsteinium
99 | | | | | | | | | (12) | 65.4 | Zu | zinc
30 | 2 5 | 112.4 | Ca | 48 | 200.6 | Ξ | mercury
80 | | Eleme | | 163 | | dysprosium
66 | [251] | ᡈ | californium einsteinium
98 99 | | | | | | | | | (11) | 63.5 | J | copper | 67.07 | 6.701 | Age is | 47 | 197.0 | Ρη | plog
79 | [272] | Rg
roentgenium | | 159 | | terbium d | [245] | | berketium c | | | | | | | | | (10) | 58.7 | ź | nickel | 07 | 106.4 | Pd | 46 | 195.1 | 꿉 | platinum
78 | [271] | DS
damstadtium in | 2 | 157 | В | gadolinium
64 | [247] | Ę | aurium
96 | | | | | | | | | (6) | 58.9 | ပ | cobalt | /7 | 102.9 | Rhodium
militari | | 192.2 | <u>1</u> | iridium
77 | [368] | E | | 152 | | europium i | [243] | Am | americium
95 | | | 1.0
H
hydrogen | | | | | | (8) | 55.8 | Fe | iron
26 | 07 | 101.1 | Ru | 4 | 190.2 | os | osmium
76 | [277] | Hs
hassium r | | 150 | | samarium
62 | _ | Pu | plutonium
94 | | | | | | | | | 0 | 54.9 | W | nanganese | 67 | [86] I | Mo Tc Ru | 43 | 186.2 | Re | rhenium
75 | [264] | Bh
bohrium | | [147] | | | [237] | å | neptunium
93 | | | | nass | 70 | ımber | | | (9) | 52.0 | ъ | chromium manganese | 17 | 95.9 | Mo | 42 | 183.8 | > | tungsten
74 | [366] | Sg
seaborgium | 3 | 144 | P | praseodymium neodymium promethium 59 60 61 | | > | uranium 1 | | | Key | relative atomic mass | atomic symbol | name
atomic (proton) number | | | (2) | 50.9 | > | vanadium
73 | 62 | 6.76 | Q Notice | | 180.9 | Ā | tantalum
73 | [262] | E | 2 | 141 | Ą | raseodymium
59 | [231] | Pa | protactinium
91 | | | | relati | ato | atomic | | | (4) | 47.9 | ï | Ę | 77 | 71.5 | Zr | 40 | 178.5 | Ŧ | hafnium
72 | [261] | Rf
rutherfordium | | 140 | | cerium p | 232 | | thorium p | | | | | | | | | (3) | 45.0 | Sc | scandium
21 | 17 | 88.9 | - | | 138.9 | La* | lanthanum
57 | [227] | Ac* | ֓֟֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֡֓֓֓֓֟֓֓֓֓֟֓֓֡֓֡֓֡֓֡֓֟֓֓֡֓֡ | | s | | | | | | 7 | (2) | 9.0 | Be | beryllium
4 | 24.3 | Wa | magnesium
12 | 40.1 | Ca | F | 27, | 9.78 | Sr | 38 | 137.3 | | barium l | [326] | Ra
radium | 3 | | * Lanthanide series | * Actinide series | | | | | - | 3 | 6.9 | ב | lithium | 23.0 | Na N | _ | 39.1 | ¥ | potassium
19 | 2 2 | 85.5 | 2 | - | 132.9 | ర | caesium
55 | [223] | Fr
francium
87 | 5 | | * Lanth | * Actini |